Related Papers in AAAI 2021 (Feb 02-09 2021)
anomaly detection [anomaly, outlier, out-of-distribution, one-class, Malware detection, …]
- LREN: Low-Rank Embedded Network for Sample-Free Hyperspectral Anomaly Detection - Kai Jiang, Weiying Xie, Jie Lei, Tao Jiang, Yunsong Li 
- GAN Ensemble for Anomaly Detection - Xiaohui Chen, Xu Han, Liping Liu 
- Anomaly Attribution with Likelihood Compensation - Tsuyoshi Ide, Amit Dhurandhar, Jiri Navratil, Moninder Singh, Naoki Abe 
- Regularizing Attention Networks for Anomaly Detection in Visual Question Answering - Doyup Lee, Yeongjae Cheon, Wook-Shin Han 
- Appearance-Motion Memory Consistency Network for Video Anomaly Detection - Ruichu Cai, Hao Zhang, Wen Liu, Shenghua Gao, Zhifeng Hao 
- 【看一下】 Learning Semantic Context from Normal Samples for Unsupervised Anomaly Detection - Xudong Yan, Huaidong Zhang, Xuemiao Xu, Xiaowei Hu, Pheng-Ann Heng 
- Graph Neural Network-Based Anomaly Detection in Multivariate Time Series - Ailin Deng, Bryan Hooi 
- 【重点阅读】 Time Series Anomaly Detection with Multiresolution Ensemble Decoding - Lifeng Shen, Zhongzhong Yu, Qianli Ma, James Tin-Yau Kwok 
- 【看一下】 Outlier Impact Characterization for Time Series Data - Jianbo Li, Lecheng Zheng, Yada Zhu, Jingrui He 
- Graph Neural Network to Dilute Outliers for Refactoring Monolith Application - Utkarsh Desai, Sambaran Bandyopadhyay, Srikanth Tamilselvam 
- Accelerated Combinatorial Search for Outlier Detection with Provable Bound on Sub- 
 Optimality- Guihong Wan, Haim Schweitzer 
- 【看一下】 Neighborhood Consensus Networks for Unsupervised Multi-View Outlier Detection - Li Cheng, Yijie Wang, Xinwang Liu 
- DecAug: Out-of-Distribution Generalization via Decomposed Feature Representation and 
 Semantic Augmentation- Haoyue Bai, Rui Sun, Lanqing Hong, Fengwei Zhou, Nanyang Ye, Han-Jia Ye, Gary Chan, Zhenguo Li 
- Few-Shot One-Class Classification via Meta-Learning - Ahmed Frikha, Denis Krompass, Hans-Georg Koepken, Volker Tresp 
- Classifying Sequences of Extreme Length with Constant Memory Applied to Malware 
 Detection- Edward Raff, William Fleshman, Richard J Zak, Hyrum Anderson, Bobby Filar, Mark McLean 
- Disentangled Representation Learning in Heterogeneous Information Network for Large- 
 Scale Android Malware Detection in the COVID-19 Era and Beyond- Shifu Hou, Yujie Fan, Mingxuan Ju, Yanfang Ye, Wenqiang Wan, Kui Wang, Yinming Mei, Qi Xiong, 
 Fudong Shao
heterogeneous
- Embedding Heterogeneous Networks into Hyperbolic Space without Meta-‐Path - Lili Wang, Chongyang Gao, Chenghan Huang, Ruibo Liu, Weicheng Ma, Soroush Vosoughi 
- Synergetic Learning of Heterogeneous Temporal Sequences for Multi-‐Horizon Probabilistic Forecasting - Longyuan Li, Jihai Zhang, Junchi Yan, Yaohui Jin, Yunhao Zhang, Yanjie Duan, Guangjian Tian 
- Multi-‐Modal Multi-‐Label Emotion Recognition with Heterogeneous Hierarchical Message Passing - Dong Zhang, Xincheng Ju, Wei Zhang, Junhui Li, Shoushan Li, Zhu Qiaoming, Zhou Guodong 
- Heterogeneous Graph Structure Learning for Graph Neural Networks - Jianan Zhao, Xiao Wang, Chuan Shi, Binbin Hu, Guojie Song, Yanfang Ye 
- Disentangled Representation Learning in Heterogeneous Information Network for Large-‐ 
 Scale Android Malware Detection in the COVID-‐19 Era and Beyond- Shifu Hou, Yujie Fan, Mingxuan Ju, Yanfang Ye, Wenqiang Wan, Kui Wang, Yinming Mei, Qi Xiong, Fudong Shao 
- MERL: Multimodal Event Representation Learning in Heterogeneous Embedding Spaces - Linhai Zhang, Deyu Zhou, Yulan He, Zeng Yang 
- Modeling Heterogeneous Relations across Multiple Modes for Potential Crowd Flow Prediction - Qiang Zhou, Jingjing Gu, Xinjiang Lu, Fuzhen Zhuang, Yanchao Zhao, Qiuhong Wang, Xiao Zhang 
- 【重要】 Infusing Multi-‐Source Knowledge with Heterogeneous Graph Neural Network for Emotional Conversation Generation - Yunlong Liang, Fandong Meng, Ying Zhang, Yufeng Chen, Jinan Xu, Jie Zhou 
- HARGAN: Heterogeneous Argument Attention Network for Persuasiveness Prediction - Kuo-‐Yu Huang, Hen-‐Hsen Huang, Hsin-‐Hsi Chen 
- Deep Innovation Protection: Confronting the Credit Assignment Problem in Training Heterogeneous Neural Architectures - Sebastian Risi, Kenneth O Stanley 
- Real-‐Time Tropical Cyclone Intensity Estimation by Handling Temporally Heterogeneous Satellite Data - Boyo Chen, Buo-‐Fu Chen, Yun-‐Nung Chen 
Time series
- Deep Switching Auto-Regressive Factorization: Application to Time Series Forecasting - Amirreza Farnoosh, Bahar Azari, Sarah Ostadabbas 
- 【重点阅读】 Dynamic Gaussian Mixture Based Deep Generative Model for Robust Forecasting on Sparse 
 Multivariate Time Series- Yinjun Wu, Jingchao Ni, Wei Cheng, Bo Zong, Dongjin Song, Zhengzhang Chen, Yanchi Liu, Xuchao 
 Zhang, Haifeng Chen, Susan B Davidson
- Second Order Techniques for Learning Time-Series with Structural Breaks - Takayuki Osogami 
- Correlative Channel-Aware Fusion for Multi-View Time Series Classification - Yue Bai, Lichen Wang, Zhiqiang Tao, Sheng Li, Yun Fu 
- 【看一下】 Learnable Dynamic Temporal Pooling for Time Series Classification - Dongha Lee, Seonghyeon Lee, Hwanjo Yu 
- Time Series Domain Adaptation via Sparse Associative Structure Alignment - Ruichu Cai, Jiawei Chen, Zijian Li, Wei Chen, Keli Zhang, Junjian Ye, Zhuozhang Li, Xiaoyan Yang, 
 Zhenjie Zhang
- 【看一下】 Learning Representations for Incomplete Time Series Clustering - Qianli Ma, Chuxin Chen, Sen Li, Garrison Cottrell 
- Temporal Latent Autoencoder: A Method for Probabilistic Multivariate Time Series 
 Forecasting- Nam Nguyen, Brian Quanz 
- ShapeNet: A Shapelet-Neural Network Approach for Multivariate Time Series Classification - Guozhong Li, Byron Choi, Jianliang Xu, Sourav S Bhowmick, Kwok-Pan Chun, Grace Lai-Hung Wong 
- Joint-Label Learning by Dual Augmentation for Time Series Classification - Qianli Ma, Zhenjing Zheng, Jiawei Zheng, Sen Li, Wanqing Zhuang, Garrison Cottrell 
- 【Best paper award】 Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting - Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, Wancai Zhang 
- Meta-Learning Framework with Applications to Zero-Shot Time-Series Forecasting - Boris N. Oreshkin, Dmitri Carpov, Chapados Nicolas, Yoshua Bengio 
about deep learning
- Deep Frequency Principle Towards Understanding Why Deeper Learning Is Faster - Zhiqin John Xu, Hanxu Zhou 
- Understanding Decoupled and Early Weight Decay - Johan Björck, Kilian Weinberger, Carla P Gomes 
sequence
- Copy That! Editing Sequences by Copying Spans - Sheena L Panthaplackel, Miltiadis Allamanis, Marc Brockschmidt 
- Semi-Supervised Knowledge Amalgamation for Sequence Classification - Jidapa Thadajarassiri, Thomas Hartvigsen, Xiangnan Kong, Elke Rundensteiner 
- Neural Sequence-to-Grid Module for Learning Symbolic Rules - Segwang Kim, Hyoungwook Nam, Joonyoung Kim, Kyomin Jung 
- Synergetic Learning of Heterogeneous Temporal Sequences for Multi-Horizon Probabilistic 
 Forecasting- Longyuan Li, Jihai Zhang, Junchi Yan, Yaohui Jin, Yunhao Zhang, Yanjie Duan, Guangjian Tian 
- Semi-Supervised Sequence Classification through Change Point Detection - Nauman Ahad, Mark Davenport 
- Bridging Towers of Multi-Task Learning with a Gating Mechanism for Aspect-Based 
 Sentiment Analysis and Sequential Metaphor Identification- Rui Mao, Xiao Li 
- Deterministic Mini-Batch Sequencing for Training Deep Neural Networks - Subhankar Banerjee, Shayok Chakraborty 
- 【看一下】 SeCo: Exploring Sequence Supervision for Unsupervised Representation Learning - Ting Yao, Yiheng Zhang, Zhaofan Qiu, Yingwei Pan, Tao Mei 
- Answering Complex Queries in Knowledge Graphs with Bidirectional Sequence Encoders - Bhushan Kotnis, Carolin Lawrence, Mathias Niepert 
- Residual Shuffle-Exchange Networks for Fast Processing of Long Sequences - Andis Draguns, Emīls Ozoliņš, Agris Šostaks, Matīss Apinis, Karlis Freivalds 
- Entity Guided Question Generation with Contextual Structure and Sequence Information 
 Capturing- Qingbao Huang, Mingyi Fu, Linzhang Mo, Yi Cai, Jingyun Xu, Pijian Li, Qing Li, Ho-fung Leung 
- Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy- 
 Generation Networks- Cunchao Zhu, Muhao Chen, Changjun Fan, Guangquan Cheng, Yan Zhang 
- 【看一下】 Continuous-Time Attention for Sequential Learning - Yi-Hsiang Chen, Jen-Tzung Chien 
- Interpretable Sequence Classification via Discrete Optimization - Maayan Shvo, Andrew C Li, Rodrigo A Toro Icarte, Sheila A. McIlraith 
interpretable [Understanding, explanation, Attribution …]
- Building Interpretable Interaction Trees for Deep NLP Models - Die Zhang, HuiLin Zhou, Xiaoyi Bao, Da Huo, Ruizhao Chen, Hao Zhang, Xu Cheng, Mengyue Wu, 
 Quanshi Zhang
- Interpretable Embedding Procedure Knowledge Transfer via Stacked Principal Component 
 Analysis and Graph Neural Network- Seunghyun Lee, Byung Cheol Song 
- Interpreting Neural Networks as Quantitative Argumentation Frameworks - Nico Potyka 
- Interpretable Clustering on Dynamic Graphs with Recurrent Graph Neural Networks - Yuhang Yao, Carlee Joe-Wong 
- Interpreting Deep Neural Networks with Relative Sectional Propagation by Analyzing 
 Comparative Gradients and Hostile Activations- Woo Jeoung Nam, Jaesik Choi, Seong-Whan Lee 
- Human-Level Interpretable Learning for Aspect-Based Sentiment Analysis - Rohan K Yadav, Lei Jiao, Ole-Christoffer Granmo, Morten Goodwin 
- Learning Accurate and Interpretable Decision Rule Sets from Neural Networks - Litao Qiao, Weijia Wang, Bill Lin 
- Learning Interpretable Models for Couple Networks under Domain Constraints - Hongyuan You, Sikun Lin, Ambuj Singh 
- Explanation Consistency Training: Facilitating Consistency-Based Semi-Supervised Learning 
 with Interpretability- Tao Han, Wei-Wei Tu, Yu-Feng Li 
- i-Algebra: Towards Interactive Interpretability of Deep Neural Networks - Xinyang Zhang, Pang Ren, Shouling Ji, Fenglong Ma, Ting Wang 
- 【看一下】 Explainable Models with Consistent Interpretations - Vipin Pillai, Hamed Pirsiavash 
- Iterative Bounding MDPs: Learning Interpretable Policies via Non-Interpretable Methods - Nicholay Topin, Stephanie Milani, Fei Fang, Manuela Veloso 
- HyDRA: Hypergradient Data Relevance Analysis for Interpreting Deep Neural Networks - Yuanyuan Chen, Boyang Li, Han Yu, Pengcheng Wu, Chunyan Miao 
- Interpreting Multivariate Shapley Interactions in DNNs - Hao Zhang, Yichen Xie, Longjie Zheng, Die Zhang, Quanshi Zhang 
- 【看一下】 Self-Attention Attribution: Interpreting Information Interactions Inside Transformer - Yaru Hao, Li Dong, Furu Wei, Ke Xu 
- Interpretable Sequence Classification via Discrete Optimization - Maayan Shvo, Andrew C Li, Rodrigo A Toro Icarte, Sheila A. McIlraith 
- 【看一下】 The Heads Hypothesis: A Unifying Statistical Approach towards Understanding Multi-Headed 
 Attention in BERT- Madhura Pande, Aakriti Budhraja, Preksha Nema, Pratyush Kumar, Mitesh M. Khapra 
- Ordered Counterfactual Explanation by Mixed-Integer Linear Optimization - Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike, Kento Uemura, Hiroki Arimura 
- Strong Explanations in Abstract Argumentation - Markus Ulbricht, Johannes Peter Wallner 
- On Generating Plausible Counterfactual and Semi-Factual Explanations for Deep Learning - Eoin Kenny, Mark Keane 
- The Tractability of SHAP-Score-Based Explanations for Classification over Deterministic and 
 Decomposable Boolean Circuits- Marcelo Arenas, Pablo Barceló, Leopoldo Bertossi, Mikaël Monet 
- On the Tractability of SHAP Explanations - Guy Van den Broeck, Anton Lykov, Maximilian Schleich, Dan Suciu 
- Responsibility Attribution in Parameterized Markovian Models - Christel Baier, Florian Funke, Rupak Majumdar 
- A Unified Taylor Framework for Revisiting Attribution Methods - Huiqi Deng, Na Zou, Mengnan Du, Weifu Chen, Guocan Feng, Xia Hu 
- 【看一下】 Explaining Convolutional Neural Networks through Attribution-Based Input Sampling and 
 Block-Wise Feature Aggregation- Sam Sattarzadeh, Mahesh Sudhakar, Anthony Lem, Shervin Mehryar, Konstantinos N Plataniotis, 
 Jongseong Jang, Hyunwoo Kim, Yeonjeong Jeong, SangMin Lee, Kyunghoon Bae
- 【看一下】 Visualization of Supervised and Self-Supervised Neural Networks via Attribution Guided 
 Factorization- Shir Gur, Ameen Ali, Lior Wolf 
- Enhanced Regularizers for Attributional Robustness - Anindya Sarkar, Anirban Sarkar, Vineeth N Balasubramanian 
- 【看一下】 Explaining a Black-Box by Using a Deep Variational information Bottleneck Approach - Seojin Bang, Pengtao Xie, Heewook Lee, Wei Wu, Eric Xing 
- Explaining Neural Matrix Factorization with Gradient Rollback - Carolin Lawrence, Timo Sztyler, Mathias Niepert 
Autoencoder
- Content Learning with Structure-Aware Writing: A Graph-Infused Dual Conditional 
 Variational Autoencoder for Automatic Storytelling- Meng Hsuan Yu, Juntao Li , Zhangming Chan, Dongyan Zhao, Rui Yan 
- 【看一下】 HOT-VAE: Learning High-Order Label Correlation for Multi-LabelClassification via Attention- 
 Based Variational Autoencoders- Wenting Zhao, Shufeng Kong, Junwen Bai, Daniel Fink, Carla P Gomes 
- Fractal Autoencoders for Feature Selection - Xinxing Wu, Qiang Cheng 
- Temporal Latent Autoencoder: A Method for Probabilistic Multivariate Time Series 
 Forecasting- Nam Nguyen, Brian Quanz 
- Open-Set Recognition with Gaussian Mixture Variational Autoencoders - Alexander Cao, Yuan Luo, Diego Klabjan 
- Unsupervised Learning of Discourse Structures Using a Tree Autoencoder - Patrick Huber, Giuseppe Carenini 
missing value & irregularly sampled time series [Incomplete, imputation, …]
- Generative Semi-Supervised Learning for Multivariate Time Series Imputation - Xiaoye Miao, Yangyang Wu, Jun Wang, Yunjun Gao, Xudong Mao, Jianwei Yin 
- Tripartite Collaborative Filtering with Observability and Selection for Debiasing Rating 
 Estimation on Missing-Not-at-Random Data- Qi Zhang, Longbing Cao, Chongyang Shi, Liang Hu 
- Unified Tensor Framework for Incomplete Multi-View Clustering and Missing-View Inferring - Jie Wen, Zheng Zhang, Zhao Zhang, Lei Zhu, Lunke Fei, Bob Zhang, Yong Xu 
- Quantification of Resource Production Incompleteness - Yakoub Salhi 
- 【看一下】 Learning Representations for Incomplete Time Series Clustering - Qianli Ma, Chuxin Chen, Sen Li, Garrison Cottrell 
- The Parameterized Complexity of Clustering Incomplete Data - Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, Stefan Szeider 
- Restricted Domains of Dichotomous Preferences with Possibly Incomplete Information - Zoi Terzopoulou, Alexander Karpov, Svetlana Obraztsova 
- Estimating the Number of Induced Subgraphs from Incomplete Data and Neighborhood 
 Queries- Dimitris Fotakis, Thanasis Pittas, Stratis Skoulakis 
Recurrent Neural Network
这部分都可以看一下
- Shuffling Recurrent Neural Networks - Michael Rotman, Lior Wolf 
- Memory-Gated Recurrent Networks - Yaquan Zhang, Qi Wu, Nanbo Peng, Min Dai, Jing Zhang, Hu Wang 
- On the Softmax Bottleneck of Recurrent Language Models - Dwarak Govind Parthiban, Yongyi Mao, Diana Inkpen 
- Forecasting Reservoir Inflow via Recurrent Neural ODEs - Fan Zhou, Liang Li 
clustering
- Hierarchical Multiple Kernel Clustering - Jiyuan Liu, Xinwang Liu, Siwei Wang, Sihang Zhou, Yuexiang Yang 
- Interpretable Clustering on Dynamic Graphs with Recurrent Graph Neural Networks - Yuhang Yao, Carlee Joe-Wong 
- Clustering Ensemble Meets Low-Rank Tensor Approximation - Yuheng Jia, Hui Liu, Junhui Hou, Qingfu Zhang 
- Contrastive Clustering - Yunfan Li, Peng Hu, Zitao Liu, Dezhong Peng, Joey Tianyi Zhou, Xi Peng 
- GoT: a Growing Tree Model for Clustering Ensemble - Feijiang Li, Yuhua Qian, Jieting Wang 
- Unified Tensor Framework for Incomplete Multi-View Clustering and Missing-View Inferring - Jie Wen, Zheng Zhang, Zhao Zhang, Lei Zhu, Lunke Fei, Bob Zhang, Yong Xu 
- LRSC: Learning Representations for Subspace Clustering - Changsheng Li, Chen Yang, Bo Liu, Ye Yuan, Guoren Wang 
- Automated Clustering of High-Dimensional Data with a Feature Weighted Mean-Shift 
 Algorithm- Saptarshi Chakraborty, Debolina Paul, Swagatam Das 
- Learning Representations for Incomplete Time Series Clustering - Qianli Ma, Chuxin Chen, Sen Li, Garrison Cottrell 
- Multiple Kernel Clustering with Kernel k-Means Coupled Graph Tensor Learning - Zhenwen Ren, Quansen Sun, Dong Wei 
- Tri-Level Robust Clustering Ensemble with Multiple Graph Learning - Peng Zhou, Liang Du, Yi-Dong Shen, Xuejun Li 
- Deep Mutual Information Maximin for Cross-Modal Clustering - Yiqiao Mao, Xiaoqiang Yan, Qiang Guo, Yangdong Ye 
- Fairness, Semi-Supervised Learning, and More: A General Framework for Clustering with 
 Stochastic Pairwise Constraints- Brian Brubach, Darshan Chakrabarti, John P Dickerson, Aravind Srinivasan, Leonidas Tsepenekas 
- Deep Fusion Clustering Network - Wenxuan Tu, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, En Zhu, Jieren Cheng 
- The Parameterized Complexity of Clustering Incomplete Data - Eduard Eiben, Robert Ganian, Iyad Kanj, Sebastian Ordyniak, Stefan Szeider 
- Objective-Based Hierarchical Clustering of Deep Embedding Vectors - Dmitrii Avdiukhin, Stanislav Naumov, Grigory Yaroslavtsev 
- Variational Fair Clustering - Imtiaz Masud Ziko, Jing Yuan, Eric Granger, Ismail Ben Ayed 
- Extreme k-Center Clustering - MohammadHossein Bateni, Hossein Esfandiari, Manuela Fischer, Vahab Mirrokni 
- Differentially Private Clustering via Maximum Coverage - Matthew Jones, Huy Nguyen, Thy D Nguyen 
data augmentation
- AttaNet: Attention-Augmented Network for Fast and Accurate Scene Parsing - Qi Song, Kangfu Mei, Rui Huang 
- How Does Data Augmentation Affect Privacy in Machine Learning? - Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, Tie-Yan Liu 
- SnapMix: Semantically Proportional Mixing for Augmenting Fine-Grained Data - Shaoli Huang, Xinchao Wang, Dacheng Tao 
- Inferring Emotion from Large-Scale Internet Voice Data: A Semi-Supervised Curriculum 
 Augmentation Based Deep Learning Approach- Suping Zhou, Jia Jia, Zhiyong Wu, Zhihan Yang, Yanfeng Wang, Wei Chen, Fanbo Meng, Shuo 
 Huang, Jialie Shen, Xiaochuan Wang
- Kernel-Convoluted Deep Neural Networks with Data Augmentation - Minjin Kim, Young-geun Kim, Dongha Kim, Yongdai Kim, Myunghee Cho Paik 
- Improving Commonsense Causal Reasoning by Adversarial Training and Data Augmentation - Ignacio Iacobacci, Ieva Staliūnaitė, Philip John Gorinski 
- Self-Supervised Multi-View Stereo via Effective Co-Segmentation and Data-Augmentation - Hongbin Xu, Zhipeng Zhou, Yu Qiao, Wenxiong Kang, Qiuxia Wu 
- Joint-Label Learning by Dual Augmentation for Time Series Classification - Qianli Ma, Zhenjing Zheng, Jiawei Zheng, Sen Li, Wanqing Zhuang, Garrison Cottrell 
- Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre- 
 Training- Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu, Alexander Hanbo Li, Jun Wang, Cicero Nogueira 
 dos Santos, Bing Xiang
- Two-Stream Convolution Augmented Transformer for Human Activity Recognition - Bing Li, Wei Cui, Wei Wang, Le Zhang, Zhenghua Chen, Min Wu 
- Data Augmentation for Graph Neural Networks - Tong Zhao, Yozen Liu, Leonardo Neves, Oliver J Woodford, Meng Jiang, Neil Shah 
About distribution
- Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for Thoracic Disease 
 Identification- Yi Zhou, Lei Huang, Tianfei Zhou, Ling Shao 
- Robust Lightweight Facial Expression Recognition Network with Label Distribution Training - Zengqun Zhao, Qingshan Liu, Feng Zhou 
- Wasserstein Distributionally Robust Inverse Multiobjective Optimization - Chaosheng Dong, Bo Zeng 
- The Gap on Gap: Tackling the Problem of Differing Data Distributions in Bias-Measuring 
 Datasets- Vid Kocijan, Oana-Maria Camburu, Thomas Lukasiewicz 
- 1. anomaly detection [anomaly, outlier, out-of-distribution, one-class, Malware detection, …]
- 2. heterogeneous
- 3. Time series
- 4. about deep learning
- 5. sequence
- 6. interpretable [Understanding, explanation, Attribution …]
- 7. Autoencoder
- 8. missing value & irregularly sampled time series [Incomplete, imputation, …]
- 9. Recurrent Neural Network
- 10. clustering
- 11. data augmentation
- 12. About distribution